
Since the earliest days of psychology and neuroscience, it 
has been recognized that the stream of evidence imping-
ing on sensory receptors is ambiguous and incomplete, 
and animals must use active inference to make sense of 
the world. In vision, which is a dominant sensory modal-
ity in humans and non-human primates, the brain must 
use a retinal input that is 2D, constantly moving and 
ambiguous to infer the true state of a world that is stable, 
3D and populated by meaningful entities. The relative 
insufficiency of the raw sensory input and the conse-
quent need for active interpretation extend to all sensory 
modalities and all types of decision makers and behav-
ioural situations. The efficiency with which biological 
nervous systems satisfy this goal is arguably a crowning 
achievement of evolution; its magnitude is made fully 
apparent by modern artificial intelligence applications 
such as drones or self-driving cars, in which it remains 
a considerable challenge to interpret rich, naturalistic 
sensory streams.

Among the most striking manifestations of active 
interpretation is the fact that, rather than building com-
plete representations of all the information available to 
them, intelligent beings sparsely sample the rich, incom-
ing sensory streams. Sparse sampling is a necessity for 
any limited-capacity organism that can sense much more 
information than it can fully process. Sampling is rou-
tinely manifested in attention and active-sensing behav-
iours, whereby animals inspect — that is, touch, listen, 
whisk or look at — selected sensory cues. In addition, it 
is expressed in intrinsically motivated behaviours such 

as curiosity that reflect animals’ interest in specific topics 
or questions.

Despite the ubiquity and importance of sampling 
strategies, the organization and neural substrates of 
these  strategies remain oddly unexplored. Studies 
of curiosity are relative newcomers to the neuroscience 
field1,2. Similarly, although attention and active sensing 
have been investigated in voluminous literatures, these 
literatures focus on the ways in which attention and 
active sensing modulate other systems after they are 
deployed, rather than on the mechanisms that direct 
attention and generate sampling policies. Therefore, very 
little is known regarding the motives that drive attention 
and curiosity3. How do animals deem some sources of 
information to be more attention-worthy than others? 
How do they decide which stimuli or questions warrant 
investigation and which ones can be safely ignored?

Here, we review a nascent neuroscientific litera-
ture that examines these questions relying on novel 
active-sampling tasks inspired by earlier studies in 
cognitive psychology and the animal-learning litera-
ture (for examples, see REFS4–6). We take an unusually 
integrative approach and focus on the commonalities 
between attention and curiosity and their relationship 
with decision-making, in particular in the learning and 
exploration–exploitation literature. Although attention  
and curiosity each encompass distinct and heterogeneous  
mechanisms and have been discussed in separate litera-
tures, we propose that an integrative approach is appro-
priate at this stage because it highlights a core question 
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that is relevant to both processes: which factor or fac-
tors motivate animals to engage with a stimulus or a 
question?

To organize the discussion, we introduce an important 
distinction between information sampling and information 
search. Information sampling involves gathering informa-
tion relevant for a familiar task, such as looking at relevant 
stimuli while driving or asking for the answer to a trivia 
question. Information search, by contrast, refers to situa-
tions in which agents explore without prior knowledge of 
the task or goal. We emphasize the fact that both sampling 
and, especially, search entail high levels of complexity that 
are not fully recognized by current normative learning and 
decision theories7. Finally, we propose that animals cope 
with this complexity using systems of belief-based utility8, 
which confer value to information as a good in itself and 
motivate them to explore under conditions in which they 
must consider many alternatives and the relevant states and 
potential rewards are ex ante unknown.

Insofar as the questions we consider are related to 
fundamental ontological constraints of uncertainty and 
capacity limitations, our discussion draws on many 
strands of literature to which we cannot do full justice in 
this brief Review. For further enquiry, the interested reader 
is referred to excellent studies of active inference and infor-
mation demand in cognitive psychology and computer 
science4,9–11, studies of curiosity in personality and affec-
tive psychology12–15, work on child development and 
education2,16–20, experimental and theoretical consid-
erations of information demand in economics21–23, and 
discussions in philosophy24 and the popular literature25.

Active interrogation
In both neuroscience and psychology, the prevailing 
approach to studying brain and behaviour has been 
to provide participants with a preselected source of 
information — typically a sensory cue — and to require 
them to attend to, memorize or otherwise act on that 
cue. Studies of active sampling, by contrast, extend this 
approach by allowing participants to determine which 
source of information to consult before choosing an 
action. This apparently simple methodological change 
prompts a significant conceptual shift. Rather than 
being solely concerned with reactive processes by which 
agents process given sensory cues, this approach begs 
the question of how agents proactively determine which 
stimulus or question they wish to explore. As we will see 
in the following sections, this exposes multiple unex-
plored questions at the interface of traditional studies of 
cognition, decision-making and motivation.

Because the commodity that is sought by active- 
sampling behaviours is information, understanding the 
principles behind these behaviours requires a discussion 
of an individual’s informational (or epistemic) states. 
Indeed, it is the extent of an agent’s knowledge at the 
start of an investigation that defines the key distinction 
between information sampling and information search.

In information-sampling scenarios, animals gather 
information in the context of a familiar task that 
is oriented towards a known goal. These scenarios 
describe most instrumental tasks that are tested in the 
laboratory, in which participants seek to maximize an 

external reward such as money or food and which emu-
late goal-directed natural behaviours, such as walking, 
driving or preparing tea26,27. In all these behaviours, 
the decision maker knows the task structure, and this 
knowledge allows them to focus on a relatively small set 
of task-relevant actions and cues. For instance, a driver 
knows that they are likely to experience uncertainty when 
reaching an intersection and that specific stimuli (such as 
a traffic light) will help them resolve that uncertainty28. 
As we discuss in the following sections, information sam-
pling in these familiar instrumental settings is closely 
related to the exploration–exploitation literature and 
can be modelled as a strategy of reducing momentary 
uncertainty to maximize long-term operant gains29.

In the case of information search, by contrast, agents 
investigate under conditions of much higher uncertainty, 
before knowing whether a useful pattern exists or what 
it may be. Consider a primitive human who notices that 
sparks fly when striking two stones. Although the human 
may notice and be surprised by the spark, they have few 
bases on which to decide whether and for how long to 
investigate this observation. Because the human knows 
next to nothing about the potential uses of fire and sparks, 
their decision cannot be motivated by reward maximiza-
tion. Moreover, because they have very little knowledge 
of the possible explanation of what may give rise to the 
spark, they must consider a very large set of potentially 
relevant stimuli and hypotheses. Unlike the driver in the 
previous example, who can restrict their sampling to a 
small set of relevant cues, an agent motivated by curiosity 
must consider a much larger set of potentially relevant 
hypotheses and invest considerable time and effort into 
learning and discovery before knowing whether they can 
reap any benefits from their investigations.

Nevertheless, humans and other animals become 
curious about specific questions in what seems to be 
a targeted, non-random fashion, suggesting that they 
make well-defined choices even in conditions of igno-
rance and ambiguity. A central argument we make in 
this Review is that current normative theories (includ-
ing learning and decision theories) fail to provide 
adequate descriptions of these choices because they do 
not take into account their computational complexity7,30. 
We propose instead the alternative view that animals 
cope with complexity using systems of intrinsic moti-
vations, including curiosity, by which they assign value 
to specific types of information gain or (changes in) 
cognitive states, independently of external rewards or 
environment structure.

We start by reviewing studies of instrumental infor-
mation sampling and their relation to the attention and 
exploration–exploitation literatures. We continue by 
discussing non-instrumental sampling (or information 
seeking) tasks that operationalize intrinsically motivated 
sampling and open the door to studies of information 
search and curiosity.

Attention and decisions
Many studies of information sampling have been carried 
out in the domain of eye movements and visual atten-
tion, which are our key means of sampling visual 
information. Studies of eye movements and attention, 

Agents
Any entities that are capable of 
learning and decision-making, 
including humans, other 
animals and artificial 
intelligence applications such 
as robots and self-driving cars.
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however, have remained largely separate from the deci-
sion literature. Let us start by reviewing this conceptual 
separation and the ways in which active sampling can 
help to bridge this gap.

On one side of this great divide, studies of selective 
attention examine the mechanisms by which the brain 
modulates the representation of sensory cues. Most 
extensively developed in the visual systems of humans 

and non-human primates, this literature documents a 
range of attentional modulations that shape early and 
mid-level visual representations, and proposes that 
these modulations are driven by top-down input from 
higher-order control networks distributed in the frontal, 
parietal and temporal lobes31 (FIG. 1a). In monkeys, neu-
rons in parts of this network, most notably the frontal eye 
fields (FEFs) and the lateral intraparietal (LIP) area, have 
visual responses that are spatially tuned and highly selec-
tive for task-relevant cues, and are thought to encode 
sparse priority maps in which only attention-worthy 
items are strongly represented and which can direct 
spatial attention or gaze32,33. On the other side of the 
attention–decision divide, decision research explores 
how animals select between alternative actions34,35. 
These studies have traced the encoding of sensory cues, 
and the subsequent mechanisms, which are distributed 
throughout the basal ganglia, the frontal cortex and the 
parietal lobes that read out the sensory representations, 
map them on relevant actions and mediate the learning 
of action–outcome associations34–36 (FIG. 1a).

However, although these studies provide our foun-
dational knowledge of cognitive and brain function, 
they adopt a simplifying assumption that limits their 
explanatory power and enforces their conceptual sep-
aration. This is the assumption that animals act with 
near-complete knowledge of a decision situation.

In studies of decision-making, participants select 
actions from a set of predefined, clearly presented 
options. Consistent with this empirical practice, deci-
sion models that are applied to the data assume that the 
brain compares the representations of the pre-specified 
sources of ‘signal’ and ‘noise’. These theories (most nota-
bly, signal detection theory and its dynamical variants, 
sequential sampling and drift diffusion models) allow 
the possibility that the decision maker has uncertainty 
about the specific values of decision-relevant states and 
some degree of control over how much information to 
sample to reduce that uncertainty and, in some variants, 
can incorporate attention-like modulations of decision 
thresholds or the rate of evidence accumulation (for 
examples, see REFS37,38). However, these models uni-
versally assume that the agent has ex ante knowledge 
about the identity of the relevant states — that is, which 
portions of the environment constitute a signal and 
noise; they make no attempt to explain how the agent 
makes that determination.

Studies of selective attention allow the possibility that 
the brain differentially weights sensory cues, but they 
also start from the simplifying assumption that the deci-
sion maker knows to what to attend. In tasks of selective 
attention, humans are explicitly instructed, for instance, 
to “look for the T among the Ls”, and monkeys are exten-
sively trained to attend to specific features or locations39. 
Likewise, neurocomputational models assume that the 
frontoparietal network has a priority map and can use it 
to orient gaze and attention, but they do not explain how 
the map is computed.

In their existing incarnation, therefore, studies of 
attention and decision-making adopt the simplistic 
assumption that decision makers have near-perfect 
knowledge of the relevant aspects of a decision 

Priority map

Sensory 
representations 

p(I|θ)

Beliefs
p(θ|I)

Beliefs
p(θ|I')

Sensory 
representations

(given) 
p(I|θ)

Sensory 
representations

(sampled) 
p(I'|θ)

Outcome Outcome

Action decisions
(including attentional)

Belief-based 
utility

Extrinsic utility

Attention

Decisions

a b

Fig. 1 | Proposed architectures of attention and decision-making in current 
research. a | Current views of attention and decision-making. Attention (top panel), 
according to the prevailing conception31��KU�GPXKUKQPGF�CU�UVCTVKPI�YKVJ�C|RTKQTKV[�OCR� 
(or an attention field) that specifies the to-be-attended feature or location and 
modulates the sensory representations in earlier visual areas. The genesis of the priority 
map is not specified: it has an output but no inputs. Decision-making (bottom panel), 
according to a common conception130, starts with a given source of information, based 
on which the agent infers the state (model) of the world, selects the appropriate actions 
and experiences an outcome. Feedback from the outcome (dashed arrow) is used to 
learn the values of actions. The mathematical notation refers to the Bayesian description 
of these computations. Sensory responses provide a likelihood function, p(I|θ), which 
describes how likely is the current sensory response, I, given a hypothesis about the state 
of the world, θ. The decision maker’s inference consists in inverting the likelihood to 
obtain a posterior belief, p(θ|I), that specifies how likely is a given state of the world, θ, 
given the sensory observation, I. b | Integration of attention and decision-making in 
information-sampling decisions. As in the standard view , the agent makes inferences, 
takes actions and experiences outcomes. However, in contrast to the standard view , 
attention is integrated into the decision chain as an action that selects sensory cues  
(or, more generally , selects information). Thus, the evidence that supports the decision is 
no longer given but is endogenously selected (indicated by I′). This selection, in turn, 
depends on the agent’s beliefs about the relevant states (top black arrow on the left).  
For instance, a driver looks at a traffic light on the basis of their belief that the light will 
provide relevant information. Moreover, and particularly important, this allows the 
attentional selection (and not only the final actions) to be optimized for the current 
situation. This optimization may involve two types of utility-based feedback. One type of 
feedback describes the value of the eventual outcome — the material gains that the 
agent expects to obtain (extrinsic utility ; dashed light blue arrow). Another type of 
feedback describes the value of cognitive states — the agent’s preferences for what they 
wish to believe, know or observe (belief-based utility ; dashed red arrow). Belief-based 
utility is particularly useful and indeed required in open-ended contexts in which the 
agent may lack advance knowledge of the material outcome (or the outcome is very 
delayed or uncertain). In these settings, intrinsic preferences for cognitive states allow 
agents to generate intrinsically motivated, curiosity-driven learning and discovery.

NATURE REVIEWS | NEUROSCIENCE

REV IEWS



situation3,27,40. They are thus ill-equipped to capture real-
istic scenarios in which decision makers must consider 
multiple potentially relevant attributes and determine 
which attribute to attend when choosing an action.

Instrumental sampling
In contrast to the traditional approach described in the 
previous section, studies of active sampling directly 
address the nature of information-sampling policies. In 
these studies, participants are allowed to determine not 
only which action to take but also which one of several 
cues to consult before choosing that action. By exam-
ining participants’ information demand (as expressed 
through an eye movement or the press of a button), this 
approach naturally bridges the divide between attention 
and decision research. Specifically, it reframes atten-
tion as one of several actions that an agent can take 
that has the role of reducing uncertainty and can be 
optimized to best serve a given situation (FIG. 1b).

In instrumental-sampling scenarios, agents are pre-
sumed to seek information that is relevant to a task 
and can decide which stimulus to sample on the basis 
of their familiarity with the task-relevant actions and 
cues. Consider again a driving scenario in which you 
reach an intersection and must decide what to do (FIG. 2). 
When arriving at the intersection, you may have uncer-
tainty about which action to take — “should I step on 
the accelerator or the brake?” — and you may expect 
that the traffic light will reduce that uncertainty. This can 
be formally described as a distribution of beliefs about 
the relevant actions, which is initially uncertain (uni-
form) but is expected to become more heavily skewed 
towards one of the options if you look at the appropriate 
cue (FIG. 2). In a framework of probabilistic inference, 
changes in belief distributions can be measured as the 
difference between the dispersions (uncertainties) of 
the prior and posterior distributions, using metrics such 
as Shannon entropy, the Kullback–Leibler divergence or 
probability gains5,28. These measures of expected changes 
in belief states can, in turn, serve as decision variables for 
sampling policies. An estimate of expected information 
gain would motivate the driver to look at the traffic light 
rather than a cloud, as the light is expected to reduce 
their uncertainty about the relevant actions to a greater 
extent than the cloud.

It is critical to note that, because instrumental infor-
mation by definition pertains to a desirable goal, it has 
value only insofar as it furthers that goal. Technically, 
the value of instrumental information depends on the 
value of the outcome one seeks to achieve and the mar-
ginal increase in the probability of obtaining that 
outcome when acting with, relative to without, the 
information41,42. In the preceding example, looking at 
the traffic light has no value per se; it has value only if it 
helps a driver safely cross an intersection.

Perhaps relying on this direct link between rewards 
and a reduction in decision uncertainty, many studies 
to date have focused on each factor individually. At one 
end of the spectrum, a recent study modelled attention 
on the basis of simple reward associative rules. The 
authors trained participants to choose between sev-
eral options that differed in their reward probabilities 
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Fig. 2 | Evolution of beliefs when sampling information in different contexts.  
a | The panel provides an example of belief evolution in an instrumental context.  
A decision maker (for instance, a driver) arrives at an intersection (‘Start’) and decides 
whether to sample an informative cue (for example, a traffic light) or an uninformative 
stimulus (for example, a cloud). The driver may initially have uncertainty about  
the state of the world and estimate that crossing and waiting are equally likely to  
be the better actions. After viewing the traffic light, their beliefs will change and 
become strongly biased towards crossing or stopping, after which they are likely  
to take the appropriate action and receive a reward (‘Success?’). After viewing an 
uninformative cue, uncertainty remains high, and the driver has a higher chance of 
taking the wrong action. b | The panel provides an example of belief evolution in a 
non-instrumental context. In this case, the states and belief changes are similar to  
those above, except that the agent can no longer take a decision based on the 
information. Therefore, both the informative and uninformative cues are associated 
with equivalent reward probabilities and are distinguished only by the agent’s certainty 
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while simultaneously learning which stimulus feature 
was associated with the highest probability43. They pro-
posed that attention is allocated to features on the basis 
of their recent reward history and that this is mediated 
by changes in connectivity between networks of cog-
nitive control and reward valuation (specifically, the 
dorsal frontoparietal network and the ventromedial 
prefrontal cortex). It must be noted, however, that the 
simple setting that the authors used for that task (where a 
visual feature had a one-to-one mapping with rewarded 
actions) cannot be applied directly to most natural con-
ditions, in which cues bear arbitrary relations with future 
states and actions44.

Several studies addressed these scenarios by model-
ling visual search as a mechanism for reducing uncer-
tainty in a belief-updating framework similar to that 
described in FIG. 2 (REFS45–48). In a series of functional MRI 
studies, it was proposed that the brain learns the relia-
bility of alternative sensory cues (the potential of a cue 
to reduce uncertainty) by dynamically tracking visual 
prediction errors — that is, the extent to which the pre-
dictions made by a cue are confirmed or violated — and 
that this learning depends on the functional connectivity 
between several areas, including the temporal– 
parietal junction, the putamen, the FEF and the intrapa-
rietal sulcus49–51. Finally, a neurophysiological study in 
monkeys showed that LIP neurons encoded the relative 
reliability of competing visual cues and could guide the 
monkeys’ strategy for sampling the more informative 
cue52 (FIG. 3a,b). The evidence for reliability-based atten-
tion control is consistent with reports of reliability-based 
cue integration53 and with studies of explicit information 
demand during categorization54, suggesting that it is a 
widespread cognitive strategy.

Importantly, studies of instrumental information 
demand are closely related to the exploration–exploita-
tion literature29. This literature documents several strat-
egies through which animals and humans trade off 
between gathering rewards from well-known, familiar 
options versus exploring less familar options in order 
to potentially enhance the reward probability on longer 
time scales. These studies show that humans use targeted 
exploration, preferentially sampling options with higher 
uncertainty when this maximizes long-term operant 
gains55–57. A related proposal is that humans rapidly 
adjust the weights (leverage) that they afford to different 
sensory features in ways that compensate for decision 
variability58–60. Additional studies suggest that humans 
detect points in time in which the structure of the envi-
ronment changes and upregulate arousal and learning 
rates specifically at these points61. Analogous findings 
in monkeys show that saccade-related activity in the 
FEF differs for exploratory and exploitative saccades62. 
Finally, LIP neurons have enhanced reward learning at 
the informative step in a two-step task in which only one 
of the decisions was consequential for the final reward, 
implying that the cells reflected the correct temporal 
credit assignment independently of the delay between a 
choice and its outcome63. While the tasks used in these 
studies are substantially different from those used in 
attention research, the results are closely related. Both 
lines of research support the conclusion that humans and 

monkeys can detect task junctures with high uncertainty 
and take actions to reduce that uncertainty, including 
initiating attentional sampling and upregulating arousal 
and learning rates.

Many open questions remain regarding the mecha-
nisms of instrumental-sampling policies. One impor-
tant set of questions involves the role of cognitive effort. 
As we noted above, sampling policies depend on hier-
archical, top-down mechanisms that maintain a mem-
ory of the task-relevant cues. Acquiring information 
is associated with belief updating and longer fixation 
duration52, and changing the attentional set entails 
cognitive effort64,65, potentially reducing performance 
in tasks that require high flexibility66,67. Thus, a full 
understanding of sampling requires a better character-
ization of the neural mechanisms underlying cognitive 
effort and top-down attention control68–70. A final con-
sideration is that humans have imperfect metacogni-
tive accuracy71,72, and the control of behaviour based on 
uncertainty develops slowly with age56, suggesting that 
behaviour based on decision uncertainty has important 
limitations.

In closing, let us return to the point we made at 
the outset — that, in instrumental scenarios, a reduc-
tion in decision uncertainty is closely related with an 
increase in reward gains. Because of this correlation, 
most studies did not attempt to determine whether the 
two quantities can be dissociated. Strikingly, however, 
a recent in monkeys shows that the brain honours 
this dissociation. The study showed that LIP neurons 
encode the reliability of visual cues independently of 
the rewards expected from acting based on these cues52. 
Specifically, these neurons differentiated between cues 
that provided decision-relevant information of differ-
ent levels of reliability versus uninformative cues that 
had equivalent reward probability (FIG. 3c). This finding 
suggests that the brain encodes the expected reduc-
tion in uncertainty independently of expected gains 
in reward, an important idea that is further sup-
ported by experiments on non-instrumental sampling 
and curiosity.

Intrinsic motivation
Converging evidence shows that, in addition to gather-
ing information to serve behavioural goals, animals are 
motivated to obtain information as a good in itself. Pure 
information preferences have been demonstrated in spe-
cies as diverse as pigeons, humans and monkeys using 
so-called non-instrumental tasks, in which animals can 
observe predictive cues but cannot take actions based 
on these cues73–77.

In a task of this kind used in a neurophysiological 
study, monkeys had, in each trial, a 50:50 chance of 
receiving a large or small reward and, before receiving 
the outcome, could choose to inspect one of two cues 
that provided early reward information75. Similar to an 
instrumental context, the cues differed in their reliability, 
allowing the monkeys to form more-or-less accurate 
predictions regarding the outcome (FIG. 2b). However, 
critically different from instrumental contexts, the mon-
keys could not take actions based on the information 
— that is, they had no instrumental incentive to observe 

Instrumental context
A context in which agents are 
motivated by the desire to 
obtain a known goal, which is 
operationalized in the 
laboratory as maximizing a 
material reward (such as 
money, points, food or safety).
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a particular cue (compare FIG. 2a and FIG. 2b). Despite 
this lack of incentive, monkeys showed robust prefer-
ences for viewing informative (rather than uninform-
ative) cues. Moreover, these preferences were encoded 
by neurons implicated in reward and motivation in the 
orbitofrontal cortex78 and midbrain dopamine cells75, 
supporting the view that animals assign intrinsic value 
to engaging with reliable cues.

Understanding the logic of such pure information 
demand poses major conundrums for decision the-
ories. In the absence of instrumental incentives, what 
motivates an individual to know or observe certain 
items? Although our forays into this question are in 
their infancy, two main hypotheses have been advanced 
in the theoretical literature. These views propose, alter-
natively, that individuals have an intrinsic desire for the 
early resolution of uncertainty21 or that they are simply 
motivated to engage with positive items23,79,80.

These hypotheses predict substantially different sam-
pling strategies. An individual who is intrinsically moti-
vated to reduce uncertainty (independently of material 
gain) will attempt to maximize the accuracy of their beliefs, 
that is, to gather more precise information. By contrast, an 
individual who is intrinsically motivated to engage with 
positive cues will gather information in a biased fashion 
and may preferentially seek out pleasant but less accu-
rate cues. Such a person may eagerly enquire about an 
upcoming vacation because this information makes them 
feel good, but they may avoid enquiring about a medical 
diagnosis because this produces dread and anxiety.
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Fig. 3 | Neurons in lateral intraparietal area encode 
expected gains in information during instrumental 
sampling. a | In an instrumental-sampling task , monkeys 
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containing small dots) and two targets (small white 
squares). After a brief delay period, they made a first 
saccade to a cue (‘Sampling decision’) and a second 
saccade to a target (‘Final decision’). The initial saccade 
gathered information relevant to the second saccade. 
6JG|KPHQTOCVKQP�EQPUKUVGF�QH������EQJGTGPV�FQV�OQVKQP�
directed towards one of the targets, which was only 
delivered after the sampling saccade (right panel, red 
arrows). During the epoch preceding the first saccade (left 
panel, dashed line frame), the cues delivered no motion 
information (the dots were stationary) but were identified 
by a border whose colour indicated their reliability 
(percentage validity), defined as the probability that the 
motion signal that would be delivered by the cue correctly 
designated the rewarded target. b | The top row shows the 
firing rates (FRs) of a population of lateral intraparietal (LIP) 
cells during the sampling decision period, sorted according 
to saccade direction and the percentage validity of the 
cue. As shown by the inset cartoons, the monkeys almost 
always chose to sample the cue that had the higher 
percentage validity. The LIP neurons had higher FRs if the 
monkeys chose the cue inside rather than outside the 
receptive field (dashed circle), but this direction coding 
(the difference in FRs between the two saccade directions) 
scaled with the validity (compare the left, middle and 
centre panels). In the bottom row , the time-resolved 
regression analysis showed that the cells encoded 
percentage validity independently of confounding 
variables, including the percentage validity of the opposite 
cue and saccade metrics. c | Contrary to the predictions of 
a standard reinforcement learning account, LIP neurons 
encoded the differences in percentage validity between 
the informative cues but not equivalent differences in 
reward probability for uninformative cues. The traces show 
the mean-subtracted FR to highlight the cue-related 
modulations above and beyond the standard visual 
response. Figure adapted with permission from REF.52, 
Proceedings of the National Academy of Sciences USA.
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Emerging evidence suggests that reward-dependent 
attentional biases are pervasive in animals and humans 
and depend on dopaminergic mechanisms. One hypoth-
esis, formalized in the context of reinforcement learning 
theory, is that dopamine neurons confer value to stim-
uli that allow animals to anticipate (savour) a positive 
outcome81. According to this view, stimuli that signal an 
increase in reward trigger a dopamine prediction error 
response, which, in addition to promoting learning, 
assigns value to engaging with the predictor itself. If the 
predictor is separate from the instrumental goal, this can 
interfere with the appropriate actions. For instance, some 
rats exhibit so-called sign tracking behaviours, in which 
they orient themselves towards a light that predicts a 
reward rather than to the magazine that delivers the 
reward82. Similarly, if monkeys view a reward-predictive 
cue at one visual location, they have difficulty mak-
ing saccades to a separate location, and the neural 
correlates of these attentional biases are expressed in 
saccade-related activity in the superior colliculus and LIP 
area83–85. These paradoxical effects of rewards reflect the 
fact that animals assign value to reward predictors above 
and beyond their valuation of the rewarded actions.

A second mechanism by which dopamine can pro-
duce attentional biases is by producing ‘reward-based 
salience’ — plasticity that confers visual salience 
independently of reward anticipation. This idea is 
supported by a large body of evidence showing that 
humans automatically orient to stimuli that have past 
reward associations even when the stimuli appear as 
irrelevant distractors (and presumably do not affect 
reward anticipation)86,87. Moreover, monkeys proactively 
search for redundant reward cues (FIG. 4a), suggesting 
that reward-based salience motivates not only reactive 
orienting but also information demand in the absence 
of predictive utility88. Finally, studies in humans show 
that reward-based distraction is associated with acti-
vation of the substantia nigra–ventral tegmental areas 
and that the ability to suppress such distraction depends 
on frontal and parietal areas associated with cognitive 
control87,89,90.

In addition to inducing motivational conflict between 
task-irrelevant and task-relevant cues, reward-based 
attentional biases can impair the identification of 
informative items91. In a particularly elegant demonstra-
tion, researchers trained human participants to search 
for targets in natural scenes such that different targets 
were associated with monetary gains or the evasion of 
loss92. Although the targets had equal informativeness 
and operant value, object-selective cortical areas more 
faithfully encoded targets associated with gains rather 
than the evasion of loss, whereas the intraparietal 
sulcus had a less biased (strictly uncertainty-driven) 
target-related response. In a similar vein, the human 
N2pc response — a reliable electroencephalographic 
signature of spatial attention — was enhanced by 
reward probability independently of predictive value in a  
gambling task93.

Together, these results underscore the multifaceted 
effects of rewards on attention and show that rewards 
can bias attention in a potentially maladaptive fash-
ion by conferring intrinsic value to sensory cues. Such 

attentional biases coexist with uncertainty reduction 
mechanisms, making it imperative to understand their 
neural substrates.

Curiosity
The fact that animals and humans seek information 
even when it serves no obvious purpose seems closely 
related to curiosity, and studies of information seeking 
have set the stage for recent investigations of the neural 
mechanisms of curiosity78,94.

Curiosity, the intrinsic desire to know, has long 
been recognized as an important motive that influ-
ences human behaviour throughout the lifespan8,13,95. 
Investigators as early as Berlyne proposed that curios-
ity is of several kinds, including perceptual curiosity 
(interest in specific stimuli), diversive curiosity (novelty 
or sensation seeking) and epistemic curiosity (interest  
in specific topics)13. As we discuss below, recent work in  
artificial intelligence suggests that the term ‘curiosity’ 
also applies to sensorimotor actions, as expressed, for 
example, by a child intent on learning how to manipulate 
a toy17,96. All these behaviours can be computationally 
characterized as the autonomously generated motiva-
tion to answer a question in the absence of instrumental 
incentives. The question may be about the state of the 
environment (“what is out there in the universe?”) or 
how the environment can be manipulated (“how can I 
make the toy light up and play tunes?”).

The finding that individuals assign utility to 
non-instrumental information provides an obvious 
starting point for laboratory investigations of curios-
ity1,2. Recent experiments extended this approach to 
study epistemic curiosity, using tasks in which partici-
pants rate their interest in a trivia question, such as “how 
many tons of steel are in the Eiffel tower?”97–100. An addi-
tional study examined perceptual curiosity by exposing 
people to ambiguous (blurry) images, which were fol-
lowed, in a fraction of trials, by visual disambiguation101. 
These investigations take us a step beyond the interest in 
material outcomes and raise the question of how people 
become interested in natural knowledge domains.

Extending the results from information-seeking 
tasks, these studies have linked curiosity with the wide-
spread activation of systems of motivation, memory and 
attention. Higher curiosity ratings are associated with 
increased functional MRI activation in midbrain reward 
structures, including the caudate nucleus and the sub-
stantia nigra–ventral tegmental areas94,97,98,101, support-
ing the idea that information is intrinsically motivating. 
In addition, questions that evoke higher curiosity are 
associated with better memory for the answer and 
enhanced connectivity between the ventral tegmen-
tal area and the hippocampus97,98. Finally, perceptual 
curiosity engages frontal and parietal areas implicated 
in attention and cognitive control101. Participants with 
higher trait curiosity (assessed by personality question-
naires) engage in more widespread saccadic exploration 
of visual scenes102; additionally, in trivia tasks, higher 
curiosity is associated with faster anticipatory shifts 
of gaze to the expected location of the answer (FIG. 4b), 
and curiosity levels can be read out by machine learn-
ing algorithms using only gaze patterns99. These nascent 
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studies of curiosity may shed light on complex aspects 
of human behaviour such as aesthetic appreciation12,13. 
The longstanding idea that aesthetic pleasure is evoked 
by stimuli with intermediate levels of predictability, 
novelty or complexity103,104 suggests a link between aes-
thetics and informational demands, which is becoming 
amenable to investigation on the basis of recent studies 
that probe novelty–familiarity preferences105,106 and the 
role of sensory complexity107. Moreover, the surpris-
ing finding that approximately 5% of humans do not 
experience pleasure from music despite having normal 
music perception and normal responses to monetary 
rewards raises the additional possibility that, in addi-
tion to activating the general purpose motivational 
and reward systems, aesthetic appreciation depends on 
domain-specific rewards108.

Studies of epistemic curiosity, in turn, touch on the 
question of how humans develop lifelong interests and 
skills. The information gap theory suggests that curi-
osity arises when an individual encounters a question 
and generates a set of possible answers to it based on 
their previous knowledge, which in turn define a degree 
of uncertainty that a person may wish to resolve79. 
Consistent with this proposed reliance on prior knowl-
edge and memory, curiosity peaks if an individual has 
intermediate confidence that they know the answer to 
a question but declines if their confidence is too high 
or too low, indicating too little familiarity with the 
topic2,98,99. The involvement of memory may be critically 
important for generating specific information search 
rather than a non-specific search for novelty (diver-
sive curiosity). Particularly, it may allow individuals to 
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evidence that human anticipatory gaze is influenced by curiosity. Participants received trivia questions and rated their 
curiosity about it and their confidence in knowing the answer. After a 2-second anticipatory period, the answer appeared 
in the upper-left corner of the monitor, and participants were asked to rate their surprise regarding the answer. The most 
reliable signature of curiosity was a faster deployment of gaze at the anticipated answer location (left panel). By contrast, 
higher surprise and lower confidence were associated with longer durations of dwelling on the answer after its 
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Limited. Part b is adapted with permission from REF.99, Elsevier.
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systematically build on knowledge domains they have 
some familiarity with and thereby develop lifelong 
interests and skills15,19.

Curiosity as a tool for discovery
In the previous sections, we described evidence that 
humans and other animals assign intrinsic value to 
knowledge and information, but we have yet to dis-
cuss what such intrinsic utility may be useful for. What 
advantage do organisms derive from systems of intrin-
sic motivation and curiosity? In this final section, we 
propose that to answer this question, we must look 
beyond the ‘small-world’ information-sampling sce-
narios we have considered thus far and consider instead 
the full scope of curiosity-driven information search, in 
which decision makers cope with very high complex-
ity on extended timescales, as is the case during scien-
tific research or long-term learning (developmental or 
educational) trajectories.

In the computational modelling literature, a com-
mon approach17,109 to describing information search is 
to propose that humans and other animals are intrin-
sically motivated to learn the hidden structure of their 
environment (or, in technical terms, a ‘world model’), on 
the basis of the default assumption that this knowledge is 
useful for solving new problems that were not previously 
known or suspected110,111. This perspective underlies 
several recent theories of curiosity, including normative 
(for example, the free-energy principle109,112) and heu-
ristic (for example, the learning progress hypothesis17) 
approaches. For instance, the free-energy principle 
proposes that learners select actions that optimize their 
beliefs — or equivalently, minimize surprise — over all 
possible states and hypotheses regarding the world109,112.

However, as noted by other investigators7,30, such a 
normative account does not take into account the com-
plexity of the search process vis a vis the biological reality 

of limited capacity. To quote Bossaerts and Murawski, 
in normative theories, “a decision problem with two 
alternatives is not distinguished from one with 2100 
alternatives”.7 As such, these theories are incompatible 
with the abundant evidence that humans, in even mod-
erately complex laboratory paradigms (for example, 
requiring advance planning over several steps), produce 
inconsistent solutions113 and adopt frugal heuristics that 
rely only on a very limited set of the available cues30. In 
the domain of artificial intelligence, it is likewise well 
appreciated that normative optimization schemes such 
as active Bayesian inference scale poorly with problem 
complexity114; even non-parametric sampling-based 
models that reduce computational costs115 do not allow 
the systems to scale up to realistic problems of embodied 
control116.

In artificial intelligence, heuristic optimization 
mechanisms are the standard solution to computational 
complexity. Converging evidence shows that heuris-
tics that assign intrinsic value to information gains can 
guide efficient information search and discovery (BOX 1). 
Robot-learning experiments that examined which heu-
ristic mechanisms could scale to real-world, real-time 
learning in embodied agents fuelled the development of 
new theories of human epistemic curiosity, such as the 
learning progress hypothesis17,117.

As a concrete example, consider a study in which 
a humanoid robot interacts with a set of objects with 
hidden interdependencies — for instance, a cylindri-
cal object that is too far away to be moved by hand but 
can be moved with a stick, which can itself be moved 
only by appropriate movements of the robot’s arm and 
hand gripper — as well as with objects that cannot be 
controlled (although the robot does not initially know 
what is learnable)118 (FIG. 5a). In a classic reinforcement 
learning approach, the robot learns only if it receives an 
external reward (for example, if it can move the cylin-
drical object), which in this case would be exceedingly 
rare, producing learning that is prohibitively slow. By 
contrast, an algorithm116–118 based on intrinsic infor-
mation rewards allows an agent to define its own goals, 
focusing on those where learning progress is possible 
in practice, and to remain motivated to learn to achieve 
these self-generated goals even when the material 
rewards are rare or unknown. This process leads the 
agent to discover a variety of effects that it can produce 
in the environment, acting as stepping stones for further 
discoveries, while avoiding spending too much time on 
goals that are either too easy or too difficult.

The learning progress models have been used to 
study these heuristics17,116,117, using a low-level learning 
module that incrementally learns a predictive world 
model as new observations are collected and a meta-
cognitive module that uses unsupervised learning to build  
representations of discrete tasks, estimate the prediction 
errors that a robot has in a task and provide intrinsic 
rewards if it detects an improvement in predicting or 
controlling the task. In the previous robotic example, 
this architecture motivates the robot to start by moving 
its hands, self-generating goals to reach with the hand, 
which initially provides maximal learning progress. In so 
doing, the robot serendipitously discovers how to move 

Box 1 | Curiosity-driven learning in artificial intelligence and machine learning

There has been a growing interest in the field of artificial intelligence, machine learning 
and robotics for curiosity-driven learning algorithms (also called intrinsically motivated 
learning)96,117,126,127. Beyond the use of neuroscience-inspired concepts to solve difficult 
engineering problems, these algorithms provide insights into understanding curiosity 
in the living.

Several algorithmic mechanisms have been systematically included in machines to 
implement efficient curiosity-driven learning. These mechanisms form an ecosystem of 
mechanisms with multi-way feedback loops117,128. Learning mechanisms learn 
regularities, as well as their representations, from multimodal streams of perception 
and action. Meta-learning mechanisms learn to represent, track and predict the quality 
of a learning mechanism’s prediction or competence. An action generation system taps 
into the evolving memory abstractions of learning and meta-learning mechanisms to 
imagine potential actions to be tried117,127,128 or goals to be targeted116. Then, an action 
selection system chooses what to do by computing measures of intrinsic rewards 
derived from the expected impact on learning estimated by meta-learning 
mechanisms. As actions or goals are explored, new data are gathered, leading to 
updates of predictions and values and new representations of these predictions and 
values. In such a perspective, it becomes obvious that curiosity-driven behaviour 
cannot be explained solely by focusing on peculiar aspects of the architecture  
(for example, how intrinsic rewards are computed or maximized) but requires a 
systemic understanding in which, for example, latent representation learning may 
strongly influence (and be influenced by) the kind of situations, activities or 
self-generated goals that are targeted in curiosity-driven exploration116,128,129.
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the stick, which it then identifies as a new niche of learn-
ing progress and focus. In turn, owing to the physical 
couplings in the environment, the robot discovers how 
to move the cylindrical object when moving the stick, 
creating a new niche of progress. Meanwhile, the robot 
learns to avoid interacting with distractor objects, 
from which little can be learned. Motivated by its own 
learning progress, the robot thus generates autonomous 
goals and progressively discovers new skills, and impor-
tantly, it does so without requiring advance knowl-
edge of the environmental structure or the external 
rewards17,117,118.

The efficiency of these intrinsically motivated archi-
tectures has provided support to the learning pro-
gress hypothesis17 and raises the question of whether 

biological organisms might implement similar mech-
anisms. Although this remains an open question for 
future research, it is noteworthy that the predictions 
of learning progress models are consistent with psy-
chological observations, in particular accounting for 
major phase transitions in infant development of vocal-
izations and tool use119,120, and that software providing 
learning-progress-based personalized sequences of 
exercises improves childrens’ learning in educational 
settings121.

A particularly important parallel is the fact that, 
consistent with behaviours reported in children and 
adults2,16,122, a learning progress architecture generates a 
self-organized exploration curriculum that progresses 
from easier to more difficult tasks and favours tasks 
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produce learning in practice (activities for which prediction errors decline) and avoids activities that show no change in 
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permission from REF.17, Frontiers.
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of intermediate difficulty123,124 (FIG. 5b). Direct labora-
tory evidence supporting this view comes from a task 
in which adult humans freely interacted with a set of 
games of varying difficulty125. Despite the fact that the 
participants received no specific instructions, they 
spontaneously organized their exploration in increas-
ing order of difficulty and, after surveying the entire 
set of available tasks, settled on intermediate games in 
which their performance was 70–80% correct for the 
bulk of the session and gradually progressed to games 
of higher difficulty, consistent with the predictions of 
a learning progress mechanism125 (FIG. 6). Continued 
development of strategic student tasks of this kind, in 
which participants freely explore a set of learning prob-
lems of varying difficulty, will help test the biological 
plausibility of the learning-progress-based process and 
clarify the behavioural and neural mechanisms by which 

the brain autonomously organizes information search 
and generates useful discoveries.

Conclusions
We reviewed emerging neuroscientific evidence of 
the mechanisms generating information demand. We 
emphasized the fact that, although animals can often 
learn sophisticated goal-directed sampling policies, 
they also have intrinsic information preferences that are 
independent of instrumental demands, and they endog-
enously bias their attention and learning towards specific 
types of information and specific levels of challenge or 
accuracy.

We also proposed that these intrinsic drives are 
double-edged swords. On the one hand, in instrumen-
tal settings, intrinsic preferences may generate sampling 
biases and suboptimal learning strategies44. On the other 
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hand, in novel or exploratory contexts, they may repre-
sent critically important heuristics for generating inter-
mediate goals, organizing curiosity-driven investigations 
and making discoveries that would otherwise require 
implausibly complex optimization strategies.

The scant neuroscientific evidence available to date 
suggests that intrinsic information preferences depend 
on systems of reward and motivation and interact antag-
onistically or synergistically with systems of cognitive 
control that generate goal-directed sampling policies. 

Although our understanding of these mechanisms is 
in its infancy, their continued investigation promises to 
shed light on important topics that fall at the intersection 
of traditional studies on cognition and decision-making, 
including aesthetic preferences, active learning and 
intrinsic motivation, preferences for self-challenge 
and the engagement of control, which have thus far 
remained poorly explored.
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